Bounds for the decay of the entries in inverses and Cauchy–Stieltjes functions of sparse, normal matrices
نویسندگان
چکیده
It is known that in many functions of banded, and more generally, sparse Hermitian positive definite matrices, the entries exhibit a rapid decay away from the sparsity pattern. This is in particular true for the inverse, and based on results for the inverse, bounds for Cauchy–Stieltjes functions of Hermitian positive definite matrices have recently been obtained. We add to the known results by considering the more general case of normal matrices, for which fewer and typically less satisfactory results exist so far. Starting from a very general estimate based on approximation properties of Chebyshev polynomials on ellipses, we obtain as special cases insightful decay bounds for various classes of normal matrices, including (shifted) skewHermitian and Hermitian indefinite matrices. In addition, some of our results improve over known bounds when applied to the Hermitian positive definite case. Copyright c © 0000 John Wiley & Sons, Ltd.
منابع مشابه
Perturbation bounds for $g$-inverses with respect to the unitarily invariant norm
Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...
متن کاملDecay Bounds for Functions of Hermitian Matrices with Banded or Kronecker Structure
We present decay bounds for a broad class of Hermitian matrix functions where the matrix argument is banded or a Kronecker sum of banded matrices. Besides being significantly tighter than previous estimates, the new bounds closely capture the actual (non-monotonic) decay behavior of the entries of functions of matrices with Kronecker sum structure. We also discuss extensions to more general spa...
متن کاملDecay Bounds for Functions of Matrices with Banded or Kronecker Structure
We present decay bounds for a broad class of Hermitian matrix functions where the matrix argument is banded or a Kronecker sum of banded matrices. Besides being significantly tighter than previous estimates, the new bounds closely capture the actual (non-monotonic) decay behavior of the entries of functions of matrices with Kronecker sum structure. We also discuss extensions to more general spa...
متن کاملDecay Rates for Inverses of Band Matrices
Spectral theory and classical approximation theory are used to give a new proof of the exponential decay of the entries of the inverse of band matrices. The rate of decay oí A'1 can be bounded in terms of the (essential) spectrum of A A* for general A and in terms of the (essential) spectrum of A for positive definite A. In the positive definite case the bound can be attained. These results are...
متن کاملWavelet Sparse Approximate Inverse Preconditioners
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle [21] and Chow and Saad [11] also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse ent...
متن کامل